EFFECTS OF OPERATION CONDITIONS ON INCRUSTATION PHENOMENA

M. Hermersdorf¹, H. Glade², J. Ulrich¹

¹Martin-Luther-Universität Halle-Wittenberg FB IW, Institut für Verfahrenstechnik / TVT D-06099 Halle, Germany ²Universität Bremen, FB Produktionstechnik, Techn. Thermodynamik, Badgasteiner Str. 1, D-28359 Bremen, Germany

Introduction

<u>Process:</u> • Multi-effect distillation (MED) on horizontal tubes

- produces better water quality than membran processes
- is more efficient than multi-stage flash (MSF)

<u>Problem:</u> • inversely soluble salts: $CaCO_3$, $CaSO_4$, $Mg(OH)_2$

- scale forms outside of tubes
- diminishes process efficiency
- scale prevention and cleaning are difficult
- <u>Aim:</u> to create authentic scale layer to understand and to prevent incrustation process

\Leftarrow platform 2: horizontal tube evaporator

↑ platform 1: heating steam generator

Seawater Solution

Salt	g/L
NaCl	23,926
Na_2SO_4	4,008
KCI	0,677
NaHCO ₃	0,196
KBr	0,098
H_3BO_3	0,026
NaF	0,003
$MgCl_2 \times 6H_2O$	10,83
$CaCl_2 \times 2H_2O$	2,75
$SrCl_2 \times 6H_2O$	0,013

Figure 1: SEM showing crystals formed at same heating and evaporation temperature with test solutions of a salinity difference of 10 g/kg.

Figure 2: SEM showing crystals formed at different heating and evaporation temperature levels with the same test solution.

Heat Transfer Data

	$\Delta T = 10 \text{ K}$	$\Delta T = 20 \text{ K}$
Tsteam [°C]	80	90
Tevap [°C]	70	70
Q [kW]	3.7	7
k [W/m ² K]	1000	1100

Heat transfer area : 0.254 m^2

Figure 3: SEM showing crystals formed at different ΔT between heating and evaporation with the same test solution.

SEM Pictures of Crystal Layers

 $\frac{1000 \times 1}{\text{crystal structure at } \Delta T = 10 \text{ K after 50 h}}$

200 µm

20 µm

5 µm

5 µm

crystal structure at $\Delta T = 20$ K after 50 h

a)

1000:1

20 µm

5μm

Figure 4: SEM showing the variety of occuring crystals during the evaporation process under varying operation conditions.

Figure 5: SEM showing crystals formed at high ΔT between heating temperature and evaporation temperature. a) from the pilot plant and b) from the laboratory plant

Conclusions

- satisfactory results of incrustation after 50 h
- expected scale composition
- not depending on salinity
- not depending on temperature level
- strongly depending on operation conditions
 - temperature difference
 - heat flux

A wide variety of operation conditions is necessary to realize authentic scale formation as well as to control and minimize scale formation.

 \Rightarrow a test rig in pilot plant size is inevitable